Note

An Inequality for Derivatives of Polynomials with Positive Coefficients

S. P. Zhou*
Dalhousie University, Department of Mathematics, Statistics, and Computing Science, Halifax, Nowa Scotia, Conada B3H 3 J5
Communicated by T. J. Rivin
Received July 10, 1993; accepted in revised form October 27, 1993

Abstract

The present paper gives a complete answer to a question concerning an inequality for derivatives of polynomials with positive coefficients. 1995 Academic Press. Inc

Let Π_{N} be the class of all algebraic polynomials of degree not greater than N, let \mathscr{K}_{N} be the class of polynomials from Π_{N} which have only real coefficients and all of whose zeros lie in the half-plane $\operatorname{Re}(z) \leqslant 0$, and let Π_{N}^{+}be the class of polynomials from Π_{N} with only nonnegative coefficients. Define

$$
M(r, f)=\max _{|=|=r}|f(z)| .
$$

It is well-known that the Bernstein inequality

$$
M\left(r, f^{\prime}\right) \leqslant \frac{N}{r} M(r, f) \quad(r>0)
$$

holds for $f(z) \in \Pi_{N}$.
Abi-khuzam [1] formulated a refined form of the Bernstein inequality for polynomials that involves the number of zeros in the disk relevant for the norm. First Abi-khuzam [1, p. 119] suggested the general form of the question that follows (in particular when $n(r, f)=N$ this is a conjecture of Erdős proved by Lax).

* Current address: Department of Mathematics. University of Alberta, Edmonton, Alberta, Canada T6G 2 GI .

Conjecture. Let $f \in \Pi_{N}, N>0$, and let $n(r, f)$ be the counting function of its zeros in the disk $|z|<r$; that is, for $r>0, n(r, f)$ equals the number of zeros of f in the disc $|z|<r$, where each zero is counted as many times as its multiplicity indicates. Then

$$
\begin{equation*}
M\left(r, f^{\prime}\right) \leqslant \frac{N+n(r, f)}{2 r} M(r, f) \quad(r>0) \tag{1}
\end{equation*}
$$

Then Abi-khuzam proved that the conjecture holds for \mathscr{K}_{N}.

Thforem 1. If $f(z) \in \mathscr{K}_{N}, N>0$, then

$$
M\left(r, f^{\prime}\right) \leqslant \frac{N+n(r, f)}{2 r} M(r, f) \quad(r>0)
$$

Since Π_{N}^{+}is a wider set than \mathscr{K}_{N}, in the last section of [1] Abi-khuzam asked: If the class \mathscr{K}_{N} is replaced by Π_{N}^{+}, does the conclusion of Theorem 1 still hold for polynomials f in Π_{N}^{+}?

In answering this question, he constructed in [1] a polynomial $Q \in \Pi_{5}^{+}$,

$$
Q(z)=z^{5}+z^{4}+2 z+2
$$

and claimed that since $Q(z)$ does not satisfy inequality (1) this gives a negative answer to the question as well as to the above cited conjecture (see [1, p. 124]).

After careful verification, we found that there is something wrong in the counterexample given by Abi-khuzam. In fact, write

$$
Q(z)=(z+1)\left(z^{4}+2\right)
$$

then evidently

$$
\frac{Q^{\prime}(z)}{Q(z)}=\frac{1}{z+1}+\frac{4 z^{3}}{z^{4}+2}
$$

A direct calculation leads to

$$
\frac{4 r^{3}}{r^{4}+2} \leqslant \begin{cases}\frac{2}{r}, & r \leqslant \sqrt[4]{2} \\ \frac{4}{r}, & r>\sqrt[4]{2}\end{cases}
$$

then

$$
\frac{M\left(r, Q^{\prime}\right)}{M(r, Q)}=\frac{Q^{\prime}(r)}{Q(r)} \leqslant \begin{cases}\frac{3}{r}, & r \leqslant \sqrt[4]{2} \\ \frac{5}{r}, & r>\sqrt[4]{2}\end{cases}
$$

That is, $Q(z)$ still satisfies (1). This allows us to repeat the question raised by Abi-khuzam again: Is there a similar estimate to (1) for $f \in \Pi_{N}^{+}$?

The present note will establish the following result to give this question a complete solution, which also gives a correct negative answer to the above cited conjecture.

Theorem 2. (i) If $f \in \Pi_{N}^{+}$for $N=1,2,3,4$, then

$$
M\left(r, f^{\prime}\right) \leqslant \frac{N+n(r, f)}{2 r} M(r, f) \quad(r>0)
$$

(ii) Let $5 m \leqslant N<5(m+1), m=1,2, \ldots$ Then there exists a polynomial $f_{N} \in \Pi_{N}^{+}$such that

$$
M\left(3, f^{\prime}\right)=\frac{N+n(3, f)+2 m / 7}{2 \times 3} M(3, f)>\frac{N+n(3, f)}{2 \times 3} M(3, f)
$$

Proof. (i) Since the argument of this part is completely elementary, we omit it here.
(ii) Define

$$
f_{5}(z)=\left(z^{2}-z+1\right)(z+3)^{3}=z^{5}+8 z^{4}+19 z^{3}+9 z^{2}+27,
$$

then

$$
f_{5}^{\prime}(z)=5 z^{4}+32 z^{3}+57 z^{2}+18 z
$$

We check that

$$
\begin{equation*}
\frac{M\left(3, f_{5}^{\prime}\right)}{M\left(3, f_{5}\right)}=\frac{f_{5}^{\prime}(3)}{f_{5}(3)}=\frac{1836}{1512}=\frac{7+2 / 7}{2 \times 3} \tag{2}
\end{equation*}
$$

If $N=5 m, m=2,3,4, \ldots$, let

$$
f_{N}(z)=f_{5}^{m}(z)
$$

Hence

$$
\frac{M\left(3, f_{N}^{\prime}\right)}{M\left(3, f_{N}\right)}=\frac{m f_{5}^{\prime}(3)}{f_{5}(3)}=\frac{m(7+2 / 7)}{2 \times 3}=\frac{N+n\left(3, f_{N}\right)+2 m / 7}{2 \times 3}
$$

Finally, for $5 m<N<5(m+1), m=1,2, \ldots$, set

$$
f_{N}(z)=f_{5 m}(z)(z+3)^{N-5 m}
$$

From (2), we calculate that

$$
\frac{M\left(3, f_{N}^{\prime}\right)}{M\left(3, f_{N}\right)}=\frac{f_{5 m}^{\prime}(3)}{f_{5 m}(3)}+\frac{N-5 m}{6}=\frac{N+2 m+2 m / 7}{2 \times 3}=\frac{N+n\left(3, f_{N}\right)+2 m / 7}{2 \times 3}
$$

Thus we are done.

Reference

1. F. F. Abi-KhuZam, An inequality for derivatives of polynomials whose zeros are in a halfplane, Proc. Amer. Math. Soc. 89 (1983), 119-124.
